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Casimir effect at finite temperature 
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Abstract. The high-temperature expansion of the grand thermadynamic potential of a 
non-canformally invariant spin-0 gas in an arbitrary ultrastatic spacetime with boundary 
is given in terms of the Minakshisundaram-Pleijel coefficients of the heat-kernel and the 
zeta function of the spatial section. The general formula i s  then used to find the expansion 
in the case of a massive bosonic field subject to Dirichlet boundary conditions on hyper- 
cuboids in a flat n-dimensional spacetime. A detailed analysis of inhomogeneous multi- 
dimensional Epstein zeta functions is necessary and some new properties of them are 
derived. Finally the thermodynamics of the system is considered. 

1. Introduction 

The Casimir effect [ l ]  is one of the most beautiful and simple manifestations of the 
striking vacuum structure of quantum field theory (for general reviews see [2, 31). The 
effect is simply due to the influence of the boundary conditions imposed on the vacuum 
configuration. The dependence on the boundary conditions is made explicit by the 
formal definition of the Casimir energy 

where E,[JA] is the zero-point energy in the presence of a boundary J R  and E,[O] 
the zero-point energy without boundary. 

This definition is only meaningful, when supplemented with a regularization method 
leading to finite results. Zeta function regularization techniques of recent years have 
been shown to provide a very powerful method in calculating quantities like the vacuum 
energy or the thermodynamic potential at high temperature [4-161. Based on new 
results concerning the interchangeability of the order of summations [7] the Casimir 
energy (1.1) was obtained for many situations. 

Up to now, most of the calculations concerning the Casimir energy were done at 
temperature T = 0. The aim of this paper is to develop a systematic approach to find 
the Casimir energy at T >  0. i i e  appropriate generaiizarion of rhe Casimir energy 
(1.1) to finite temperature will be the difference between the free energy in the presence 
and in the absence of constraints [21 

(1.2) 
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Using zeta function regularization, Dowker and Kennedy [17] derived a high tem- 
perature expansion of the free energy of a massless spin-0 gas in an arbitrary ultrastatic 
spacetime. These considerations were generalized to the thermodynamic potential of 
a non-conformally invariant gas in a static spacetime without boundary [18, 191. A 
non-vanishing chemical potential has been introduced in [ 191 without much additional 
effort. Specializing to the flat-space limit, the results were found to agree with [20]. 

In order to investigate the Casimir energy (1.2) for a non-conformally invariant 
.. eas at high temperature, it is necessary to generalize the expansion of[!9! to a spacetime 
where the spatial section has a boundary. This is done in section 2. We restrict ourselves 
to an ultrastatic spacetime, because this is all we will need in the following, but the 
expressions may also be given in an arbitrary static spacetime with boundary using 
the techniques described in [18,19,21,22]. 

The expansion is given in terms of the Minakshisundaram-Pleijel coefficients of 
the heat-kernel and the zeta function of the spatial section. Obtaining the high- 
temperature expansion in a special spacetime with specific boundary conditions 
imposed on the field, essentially means finding the corresponding Minakshisundaram- 
Pleijel coefficients and analysing the zeta function of the spatial section. It is one point 
of this paper to show that preceeding in this way is a powerful method in calculating 
high-temperature expansions for special cases. 

To illustrate this, the thermodynamic potential for a massive bosonic field subject 
to Dirichlet boundary conditions on hypercuboids of arbitrary dimensions is derived, 
so extending some known results [14,23-251 to a non-zero chemical potential and to 
a field subject to external conditions. In section 3 the Minakshisundaram-Pleijel 
coefficients resulting from the described problem are calculated using Poisson resumma- 
tion. In section 4 we analyse the zeta function of the spatial section. It is seen that a 
detailed discussion of the inhomogeneous multidimensional Epstein zeta function is 
necessary. This is done in section 5 and we obtain some interesting properties of them. 
Using the results of sections 2-5 the high-temperature expansion of the thermodynamic 
potential including non-zero chemical potential is given for a field subject to the 
described external conditions in section 6. The results of two parallel plates in three 
spatial dimensions is easily extracted. In section 7 the thermodynamics of the system 
is analysed. 

Other boundary conditions can be treated by  slightly modifying the given analysis. 

2. High-temperature expansion in an ultrastatic spacetime 

We shall first concern ourselves with the finite-temperature behaviour of a field theory 
in the n-dimensional ultrastatic spacetime 

ds2=dT2+hq(x)  dx'dx'  (2.1) 

described by the field equation 

(2.2) 

with some, for the moment, unspecified boundary condition imposed on the field 4 
on the boundary JA of the spatial section A. In this Euclidean formulation of the 
field theory the chemical potential p has been incorporated as described, for example, 
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by Actor [ 141, T is the imaginary time compactified to a circle of size p, p is the inverse 
temperature,andA = Ih ( -”2(J /Jx ’ ) ( lh11’2h‘J /Jx ’ )  isthe Laplacianofthespatialsection. 

The finite thermodynamic potential is defined by [26] 

1 
+[P,ILI=-{L~(O,P,P) InA2-Lb(0, P , F ) I  (2.3) 

where A is the scaling length, the prime denotes differentiation with respect to s and 
L.(s, p, p )  is the zeta function associated with the operator 

P 

D = - ($ - p )  - A + ,$R + m2. (2.4) 

That means 

valid for Re s > n/2, with 

Dum = u,u,,,. (2.6) 

In an ultrastatic manifold time is completely separated from space and using 

the eigenvalues U, may be written in the form 

where the Ak are the eigenvalues of the operator -A+,$R + m‘with some given boundary 
condition imposed on gk(x) .  

The high-temperature expansion of the zeta function (2.5) is obtained by using the 
short-time asymptotic expansion of the integrated proper-time propagator [27-291 

Separating off the I = 0 term and neglecting exponentially small terms for f + 0 [ 17-19] 
one finds 

with z = 2s + 2j  - n + 1, b = p/2?r, p = pp/27r, LH(s, w )  is the Hurwitz zeta function and 
[n-l(s, p )  is the zeta function on the spatial section, 

n - 1  
2 

L.-,(S,IL) =- I m d r  F‘ exp(p2t)K(r)  Res>- (2.11) 
r(s) 

(where for convergence p2 must be smaller than the smallest eigenvalue A x ) .  Expanding 
g.(s, p, p )  around s = 0 [19,30], the thermodynamic potential (2.3) may be written in 
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the form 

(2.12) 

2, ( - l ) 2 r r ( ~ )  2r+ 1 Re #'"'(l+ip) 
m 

,=:.*.... ?r(2r)!  

where # ( z )  = r ' ( z ) / r ( z )  and B, are the Bernoulli polynomials. 
This is the generalization of the high-temperature expansion of the thermodynamic 

potential given in [19] to a spatial section with boundary. Setting @ = O ,  the high- 
temperature expansion of the free energy is found ([18], equation (9)). 

In my opinion, equation (2.12) is a very suitable starting point in calculating 
high-temperature expansions for specific configurations. The remaining thing to do  is 
to find the coefficients e, of the heat-kernel (2.9) and to consider the zeta function 
(2.11) on the spatial section. This is demonstrated in the next sections by treating a 
previously incompletely solved problem. 

'1 E..,--..., " 
J .  D~""P.F 

We now restrict the ultrastatic spacetime to have an Euclidean spatial section. The 
field is supposed to obey a mixture of Dirichlet and periodic boundary conditions, i.e. 
to vanish on p perpendicular pairs of parallel hyperplanes or plates held at distances 
L,  , . . . , L, and to be periodic with periodicity length L tending to infinity in q directions, 
with p + q  = n - 1 .  

In the notation of section 2 one has 

Using equation (2.12) the problem of the determination of the high-temperature 
expansion of the resulting thermodynamic potential thus reduces almost to the calcula- 
tion of the asymptotic expansion for r + 0 of the heat-kernel K (  t ) ,  (2.9), and lL-,(O,  p ) ,  
(2.11). where A x  isgiven by (3.1). Let us start with thedeterminationofthe Minakshisun- 
daram-Pleijel coefficients c,; the examination of the zeta function of the spatial section 
will be done in sections 4 and 5.  
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Taking into consideration only the leading order in L (this means the propagation 
of the field is taken to be free in q directions) we are looking for the asymptotic 
expansion for t + 0 of 

This may be found completely by the method of Poisson resummation [31] 

( "'). m 1 0  m 
exp(-xn')= ( z )  - 1 exp -- 

n=-m n=-m 

Using equation (3.3), one first finds 

I f 2  , m x m exp(-an 2 t ) = -  '((z) 1 exp(-$)-l] 2 fa " = I  

= 1 2 [(E)"' - 1 +.( exp [ -$I)] 

(3.3) 

(3.4) 

for t + 0. Looking at equation (2.5) one sees that the exponentially damped terms for 
t + O  in (3.4) lead to exponentially damped terms of L.(s,p,p) for p+O, this means 
T - W .  So it is reasonable to neglect these terms in the expansion we are looking for 
and we will ignore them from now on. So K ( r )  is readily seen to be 

("- -1) /2  Pf  2 

Lqexp(-lm2) (-l)2 '~ 'A(p-21)tf  (3.5) 
f=o,; ,I,... 

K ( t )  = (k) 
where 

X ( f  ,,..., i,, denotes the sum over all possible choices of the i ,  < i 2 < .  . . < il among I , .  . . , p, 
and A(O)=l. 

Expanding exp(-m't) in its Taylor series it is seen furthermore that 

where A( I)  = 0 for I < 0 is used. 
So the Minakshisundaram-Pleijel coefficients are given by 

[!I ( - 1 ) k m 2 k & k  
Cf = L'y-1)'' 1 A ( p  +2k-21). 

k - 0  k!  (3.8) 

These are the coefficients which have to be used in equation (2.12). To obtain the full 
expansion, only C.-,(s, p )  has to be considered for the specific example. 
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4 Zeta function of the spatial section 

This last step will lead us to consider inhomogeneous multidimensional Epstein zeta 
functions. In contrast to the intensive studies concerning homogeneous Epstein zeta 
functions (e.g. [5-111 and references cited therein), not so much is known about the 
inhomogeneous ones [7,10,11,32-351. So a more detailed consideration is necessary. 

Using equation (2.11) together with (3.2), it is seen that 

where the inhomogeneous Epstein zeta function 

E , ( u ; a ,  ,..., a,)= 
m 

(4.2) 
C 1  [a,n:+ ...+ aPn:+c2]-" 

n,, .... np=, 

a I ,  . . . , a, > 0, c E W, valid for Re Y > p / 2 ,  has been introduced (we assume (pl< m for 
the moment). For determining l b , ( O ,  p )  it is necessary to expand the RHS of equation 
(4.1) around s = 0. Already at this point E:( v; a , ,  . . . , ap)  may be seen to have poles 
of order 1 at U = - M  -f, M E  No. Let us explain this shortly. 

General zeta function theory (see e.g. [36-391) tells us that 1193: 
1 [("-ll /21 p2k 

l"-l(o, IL) = ( n - l ) , 2  z f (" - l l / 2 -k  (4.3) ( 4 r )  k-0 

where in our calculation the coefficients c(n-11/2-k are given by equation (3.8). All the 
coefficients c, are non-vanishing, i.e. l.-l(O, p )  is non-vanishing. In order that this is 
fulfilled, the Epstein zeta function in equation (4.1) must have poles forodd q = 2 M  + 1, 
M E N ,  at s = 0, because then the pole of the gamma function at s = 0 and the pole 
of the Epstein zeta function at -9/2 cancel and a non-vanishing remainder is obtained. 
ine reievant expansion in equaiion (4.1) For s-0 ihus reads 

1 E d ( s -  M - &  a l , .  . . ,a,)=-Res E d ( - M - f ;  a l . .  . . , a , )  

- 
S 

+ O ; ( - M - ~ ;  a ,,.. ., a , ) + ~ ( s ) .  (4.4) 
For 9 = 2M even, the poles of the gamma function in (4.1) at s = 0 cancel and the 
expansion needed for lA-l(O, p )  is then 
E ~ ( s - M ;  a ,,..., a , ) = E : ( - M ;  a,  ,..., a p ) + s ~ f ( - ~ ;  ai  ,..., a , ) + 0 ( s 2 ) .  (4.5) 
Expansions (4.4) and (4.5) will be given explicitly as a function of the a, in section 5. 

Thus cnn-i(s ,  p )  can be written in the form 
~4 (-i)4/2[Emi- 

6.-,(s, M )  =i4?rj" iqjiji I ." 
\ L \ L i J  \LpJ J 

for 9 even (4.6) 
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and 

L ( S ,  d =- (47r)‘l2 Lq .( -:) {Res E:’-+’( -:; ( f ) 2 ,  . . . , ( e)2) 

for q odd. (4.7) 

Differentiating with respect to s one finds 

and 

+Res E f ” (  -9.  (“)’, . . . , (t)’) 
2’ L,  

x [ y + $ ( p l ) ] )  for q odd. (4.9) 

5. lnhomogeneous multidimensional Epstein zeta functions 

In this section we want to determine Res E;‘(-N+$; a , ,  . . . , ap), O : ( - N +  
1. 2 
2, a , , .  _.  , ap),  E ,  (-A’; a , ,  . . ., ap) and E f ( - N ;  a , ,  .. ., F ~ ) ,  NEN,,.  Using regular- 
ization techniques for Mellin transforms, Res Ef, (-N +f; a , ,  . . . , aD) and 
E$( -N;  a l . .  . . , a,,) can be calculated in an elegant way [40], but in order to obtain 
all the needed quantities, the explicit analytical continuation of equation (4.2) to 
Re v < p / 2  has to be2constructed. 

Consider first E ;  ( v ;  a ) .  The analytical continuation is given by [lo] 

with the Kelvin function K l / z - u .  
Here one can see, that the poles of the inhomogeneous Epstein zeta function are 

located at U = -N+f, N E  N. This representation is very suitable to find the expansions 
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(5.2) 

(4.4) and (4.5) for p = 1, 

Ef(  Y - N +;; a )  

[$( N + 1) - I/J(N +f)  -In c2]  

K N ( ~ ) + ~ ( V )  2afc +' & r(::++) ,:, E- (:: 

E ~ ( u - N ;  a )  

(5.3) 

Next we will express E$ in terms of E::, so using equations (5.2) and (5.3) the 
analogous expansions are obtained for E ; .  First one finds (this recurrence relation 
corresponds to those given in [7], equation (4.9) and [91, equation (39)): 

By induction it may then be shown that 

E $ ( Y ;  al,. . . , ap) 

(5.5) 

X{, ,..... j,t denotes the~sum over all possible choices of the jl<. . . < jx  among 2 , .  . . , p .  
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Substituting equations (5.2) and (5.3) into equation (5.5), one obtains the expansions 

E : ( u - N + ~ ;  a,, .  . ., ap)  

(5.7) 

( - I ) P - I N !  LP/21 ( - 1 ) k v k C 2 k + 2 N  + z B(Zk)[ln c 2 -  $(N+ k +  l ) + $ ( N +  l ) ]  
2‘ k=o ( k + N ) !  

with 

1 
(5.9) B ( o  = m, 

One can check, that with equations (3.8), (4.6), (4.7). (5.7) and (5.8) the result (4.3) 
of the general zeta function theory is recovered. Equations (5.7) and (5 .8)  are the main 
results of this section. Now all the quantities necessary to write down the high- 
temperature expansion (2.12) for the considered example are known. 

6. High-temperature expansion for the example 

In this section the results of the previous sections are collected to find the high- 
temperature expansion (2.12) for the specific configuration described in section 3. 



3290 K Kirsien 

First the contribution of the zeta function of the spatial section to the thermodynamic 
potential is determined to be 
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p2'A(2j+ a) L4m2j-21+q+0 

[ ' D - - l + a ) / 2 1  

k = O  

+ (-l)P-"?riD+")/2-1 

Re $'21")(  1 + ip) p + l + , + ( q - a ) / 2  lD-,-',)/2 w A21., = 2 ( - 1 )  77 
(21- l ) !  

(6.6) 

(6.7) 

(6.8) 

(6.9) 

A(2kf 1 -a). (6.10) (-l)k?r-k ~ q ~ 2 k + 2 1 + 4 + 2 - "  
[ip--l+a1/21 zo ( k + l + l + ( q - a ) / 2 ) !  

Notice that the terms combine in such a way that the arguments of the logarithm terms 
are dimensionless, as required. 

For the especially interesting case of two parallel plates at distance L, in three 
dimensions, (i.e. p = 1, q = 2) equations (6.2)-(6.10) simplify extremely and one obtains 

A =  -L2L,mJ (6.1 1 )  
A. = Re $(l +ip)L2LIm4 (6.12) 

A-, = L 2 ( m 2 - p 2 )  (6.13) 
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A_,=2 Re B2(ip)L2Llm2 

A_,= -4 Re &(-2, l+ ip)L2 

A _ , = j R e  B,(ip)L2Ll 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

In the limit of vanishing chemical potential (i.e. p = 0 and p =0) one only has to 
replace the Bernoulli polynomials B2‘(ip) (respectively the Hyrwitz zeta function 
5h(-21,1 +ip)) by the Bernoulli numbers E,, (respectively the Riemann zeta function 

At the end of this section let us mention that A-, may be written in the form 
~ - 2 0 ) .  

A_,=L2{21n( 2sinh TP ) m2-$(m2-p2)3/2L,-m2 

(6.20) 

where 

- 1  
Li,(x)= 1 ~ x “  

n 

is the so-called polylogarithm function. 

7. Thermodynamics of the Bose gas 

Given the thermodynamic potential as a function of p, L, Lj and p, all the physical 
quantities, for example, the particle density 

the energy 

and the entropy 

may be calculated. 
Let us first consider the particle density p of the system in order to examine the 

phenomenon of Bose-Einstein condensation. Some general remarks can be made using 



Casimir effect at finite temperature 3293 

the results of 141,421, where the ideal relativistic Bose gas (i.e. p = 0) was considered. 
Bose-Einstein condensation of the system will take place for q 3 at a relativistic 
temperature T, >> m corresponding to pc = f ( m2 + Z&, ( T /  Lj)2)'/2. Using equations 
(6.2), (6.7), (6.8), (7.1), the expansions of the Bernoulli polynomials [14] and the 
Hunvitz zeta function [43], one finds (where ~ ( s )  =(1-2'-')Ln(s)): 

and 

(7.4) 

which determines T,. In the same way high-temperature expansions of the energy E 
(7.2) and the entropy S (7.3) may be found. 

Let us now consider q s 2. For q s 2 the particle density diverges according to 

for q = l  
P 1 

PLL2 (Pf-P2)"2 

for q = O  

(7.7) 

(7.8) 

as p2 tends to p: and the system will not condense. 
In order to find this behaviour, consider the expansion (6.2). At sight, it seems 

that the thermodynamic potential $ [ P ,  p] has branch cuts from p = m to p = m and 
from p = -m to p = -a, resulting from the zeta function of the spatial section. But 
looking at the definition (4.2) of the Epstein zeta function it is obvious, that the branch 
cuts begin at p = pc, and in fact it is possible to analytically continue @[p, p] to the 
region m 2 s p 2 s  CL:, as will now be shown. 

To explain the method, let us consider for simplicity q.= 2, p = 1. The general case 
is also possible to handle, but needs more algebraic effort. Using the expansion of the 
polylogarithm function [12, 141, equation (6.20) may be written in the form 

(2L,)2'(m2-p2)'+1(21+1) 
(21 + 2) ! lR(l-21) 
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or, with the reflection formula for the zeta function of Riemann [27] 

A _ ,  = L2[ 2 m ’ I n (  ”: ”) +Zm2-3p2 

(7.9) 

P 
Figurel. ( a )  Eand(b)pareshownasafunctionofp f a r q = 2 , p = I , m = I a n d  L l = 0 . 5 ~ ,  
The three curves in each diagram correspond to p = 100, 5 x 10’ and 10’ and E, p are 
increasing with p. 

2. 

P 

0 0 05 0 10 
P 

Flgurr2. ( a )  E and(b) ~arerhownasafunctianofp forq= l .p=2 ,  m = 1, L ,  = L 1 = 0 . 5 a  
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This representation provides the analytical continuation of +[p, p]  to m 2 s p 2 s  p:. 
The leading orders are 

Obviously the thermodynamic potential has branch cuts from p = ( m 2 + ( n / L , ) ’ ) ” *  to 
p = m and from p = -( m 2 + (  n/ L,)’)’/’ to p = -m, as it should, and the behaviour 
(7.6) is found. It is now easy to derive the high-temperature expansion of p, E and S 
valid for lpl s [pel. 

In order to examine, for example, E as a function of p and p, note first that the 
expansion of p is really an implicit formula for p as a function of p and p. T h i s  is 
solved numerically (we use the first five orders in p )  and the results shown in figures 
1-3 for q S 2  are obtained. For completeness let us mention, that using the low- 
temperature expansion of the thermodynamic potential (which may be found simply 
by Poisson resummation) the scaling length A has been determined in this analysis in 
such a way that the vacuum zero-temperature energy vanishes. 

Figure3. ( 0 )  E and ( b )  areshown as a function o f 0  for 9 = 0 , p  =3 .  m = I .  L, = L, = L, = 
0.k 
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8. Conclusions 

Using zeta function regularization and heat-kernel techniques a high-temperature 
expansion of the thermodynamic potential in an arbitrary ultrastatic spacetime with 
boundary has been derived, equation (2.12). Based on new results concerning the 
Minakshisundaram-Pleijel coefficient c2 [21,44-461, this expansion is known explicitly 
up to order p-"+4 for n # 4 and In p for n = 4. 

It is shown that equation (2.12) is very suitable for calculating the expansion for 
specific configurations, i.e. we discussed a massive bosonic field subject to Dirichlet 
boundary conditions on hypercuboids in a flat n-dimensional spacetime (6.2). The 
example involves the analysis of multidimensional inhomogeneous Epstein zeta func- 
tions. The essential results, interesting also from a pure mathematical point of view, 
are equations (5.7) and (5 .8 ) .  The thermodynamics of the system has been considered, 
i.e. a numerical analysis of some thermodynamical quantities has been given. 

Other boundary value problems can be treated by slightly modifying the consider- 
ations of sections 3-6. Furthermore, an analogous approach for higher-spin particles 
may be developed. 
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